[1] Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles[J]. Cancer Res, 1992, 52(22):6394-6396.
[2] Autsavapromporn N, Suzuki M, Funayama TA, et al. Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures:the impact of radiation quality[J]. Radiat Res, 2013, 180(4):367-375. DOI:10. 1667/RR3111.1.
[3] Albanese J, Dainiak N. Modulation of intercellular communication mediated at the cell surface and on extracellular, plasma membrane derived vesicles by ionizing radiation[J]. Exp Hematol, 2003, 31(6):455-464. DOI:10.1016/S0301-472X(03)00050-X.
[4] Chevalier F, Hamdi DH, Saintigny Y. Proteomic overview and perspectives of the radiation-induced bystander effects[J]. Mutat Res Rev mutat Res, 2015, 763:280-293. DOI:10.1016/j.mrrev. 2014. 11. 008.
[5] Yu X, Harris SL, Levine AJ. The regulation of exosome secretion:a novel function of the p53 protein[J]. Cancer Res, 2006, 66(9):4795-4801. DOI:10.1158/0008-5472.CAN-05-4579.
[6] Tong L, Yu KN, Bao L, et al. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect[J]. Mutat Res, 2014, 759:9-15.DOI:10.1016/j.mrfmmm. 2013. 11. 006.
[7] Mancuso M, Leonardi S, Giardullo PA, et al. Oncogenic radiation abscopal effects in vivo:interrogating mouse skin[J]. Int J Radiat Oncol Biol Phys, 2013, 86(5):993-999. DOI:10.1016/j.ijrobp.2013. 04. 040.
[8] Calveley VL, Jelveh S, Langan A, et al. Genistein can mitigate the effect of radiation on rat lung tissue[J]. Radiat Res, 2010, 173(5):602-611. DOI:10.1667/RR1896.1.
[9] Miften M, Diot Q, Gaspar L, et al. Regional normal lung tissue density changes in patients treated with stereotactic body radiation therapy for lung tumors[J]. Int J Radiat Oncol Biol Phys, 2010, 78(3):S137-138.
[10] Chang JY, Zhang X, Wang X, et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage Ⅰ or stage Ⅲ non-small-cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2006, 65(4):1087-1096. DOI:org/10.1016/j.ijrobp. 2006. 01. 052.
[11] Desai S, Kobayashi A, Konishi T, et al. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation[J]. Mutat Res, 2014, 763-764:39-44. DOI:10.1016/j.mrfmmm. 2014.03.004.
[12] Siva S, Lobachevsky P, Macmanus MP, et al. Radiotherapy for nonsmall cell lung cancer induces DNA damage response in both irradiated and out-of-field normal tissues[J]. Clin Cancer Res, 2016, 22(19):4817-4826. DOI:10.1158/1078-0432.CCR-16-0138.

Feiock C, Yagi M, Maidman A, et al. Central nervous system injury-A newly observed bystander effect of radiation[J/OL]. PLoS One, 2016, 11(9):e0163233[2017-03-10]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163233.DOI:10.1371/journal.pone.0163233.

[14] Wersäll PJ, Blomgren H, Pisa P, et al. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma[J]. Acta Oncol, 2006, 45(4):493-497. DOI:10. 1080/02841860600604611.
[15] Konoeda K. Therapeutic efficacy of pre-operative radiotherapy on breast carcinoma:in special reference to its abscopal effect on metastatic lymph-nodes[J]. Nihon Gan Chiryo Gakkai shi, 1990, 25(6):1204-1214.
[16] Camphausen K, Moses MA, Menard C, et al. Radiation abscopal antitumor effect is mediated through p53[J]. Cancer Res, 2003, 63(8):1990-1993.
[17] Hu BR, Wu LJ, Han W, et al. The time and spatial effects of bystander response in mammalian cells induced by low dose radiation[J]. Carcinogenesis, 2006, 27(2):245-251. DOI:10.1093/carcin/bgi224.
[18] Decrock E, Hoorelbeke D, Ramadan R, et al. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment?[J]. Biochim Biophys Acta, 2017, 1864(6):1099-1120. DOI:10.1016/j.bbamcr.2017.02.007.
[19] Mancuso M, Pasquali E, Leonardi S, et al. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo[J]. Oncogene, 2011, 30(45):4601-4608. DOI:10.1038/onc.2011.176.
[20] Yakovlev VA.Role of nitric oxide in the radiation-induced bystander effect[J]. Redox Biol, 2015, 6:396-400. DOI:10.1016/j.redox. 2015. 08.018.
[21] Nikitaki Z, Mavragani IV, Laskaratou DA, et al. Systemic mechanisms and effects of ionizing radiation:A new'old'paradigm of how the bystanders and distant can become the players[J]. Semin Cancer Biol, 2016, 37-38:77-95. DOI:10.1016/j.semcancer. 2016. 02.002.
[22] Xie Y, Tu W, Zhang J, et al. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation[J]. Mutat Res, 2015, 772:23-29. DOI:10.1016/j.mrfmmm. 2014.12.010.
[23] Villanueva MT. DNA repair:a new tool to target DNA repair[J]. Nat Rev Cancer, 2015, 15(3):136. DOI:10.1038/nrc3919.
[24] Dickey JS, Baird BJ, Redon CE, et al. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity[J]. Nucleic Acids Res, 2012, 40(20):10274-10286. DOI:10.1093/nar/gks795.
[25] Gahan PB, Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger[J]. Cell Biochem Funct, 2010, 28(7):529-538. DOI:10.1002/cbf.1690.
[26] Havaki S, Kotsinas A, Chronopoulos E, et al. The role of oxidative DNA damage in radiation induced bystander effect[J]. Cancer Lett, 2015, 356(1):43-51. DOI:10.1016/j.canlet.2014.01.023.
[27] Natarajan M, Gibbons CF, Mohan S, et al. Oxidative stress signa-lling:a potential mediator of tumour necrosis factor alpha-induced genomic instability in primary vascular endothelial cells[J]. Br J Radiol, 2007, 80(1):S13-22. DOI:10.1259/bjr/15316848.
[28] Glebova K, Veiko N, Kostyuk S, et al. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy[J]. Cancer Lett, 2015, 356(1):22-33. DOI:10.1016/j.canlet. 2013.09. 005.
[29] Hellweg CE. The nuclear factor kappa B pathway:a link to the immune system in the radiation response[J]. Cancer Lett, 2015, 368(2):275-289. DOI:10.1016/j.canlet. 2015.02.019.
[30] Asur R, Balasubramaniam M, Marples BA, et al. Bystander effects induced by chemicals and ionizing radiation:evaluation of changes in gene expression of downstream MAPK targets[J]. Mutagenesis, 2010, 25(3):271-279. DOI:10.1093/mutage/geq003.
[31] Savu D, Petcu I, Temelie M, et al. Compartmental stress responses correlate with cell survival in bystander effects induced by the DNA damage agent, bleomycin[J]. Mutat Res, 2015, 771:13-20. DOI:10.1016/j.mrfmmm. 2014.11.005.

Sharabi AB, Lim M, Deweese TL, et al. Radiation and checkpoint blockade immunotherapy:radiosensitisation and potential mecha-nisms of synergy[J/OL]. Lancet Oncol, 2015, 16(13):e498-509[2017-03-20]. http://www.sciencedirect.com/science/article/pii/S1470204515000078.DOI:10.1016/S1470-2045(15)00007-8.

[33] Tang C, Wang X, Soh H, et al. Combining radiation and immuno-therapy:a new systemic therapy for solid tumors?[J]. Cancer Immunol Res, 2014, 2(9):831-838. DOI:10.1158/2326-6066. CIR-14-0069.
[34] Herrera FG, Bourhis J, Coukos G. Radiotherapy combination oppor-tunities leveraging immunity for the next oncology practice[J]. CA Cancer J Clin, 2017, 67(1):65-85. DOI:10.3322/caac.21358.
[35] Faber TJ, Japink D, Leers MP, et al. Activated macrophages contain-ing tumor marker in colon carcinoma:immunohistochemical proof of a concept[J]. Tumor Biol, 2012, 33(2):435-441. DOI:10. 1007/s13277-011-0269-z.

O’neill LA. A critical role for citrate metabolism in LPS signalling[J/OL]. Biochem J, 2011, 438(3):e5-6[2017-03-10]. http://www.biochemj.org/content/438/3/e5.long.DOI:10.1042/BJ20111386.

[37] Sprung CN, Ivashkevich A, Forrester HB, et al. Oxidative DNA damage caused by inflammation May Link to stress-induced nontargeted effects[J]. Cancer Lett, 2015, 356(1):72-81. DOI:10.1016/j.canlet.2013.09.008.
[38] Dong C, He M, Tu W, et al. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or crbon beam irradiation[J]. Cancer Lett, 2015, 363(1):92-100. DOI:10.1016/j.canlet.2015.04.013.
[39] Fu JM, Yuan D, Xiao L, et al. The crosstalk between alpha-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-kappa B signaling pathways[J]. Mutat Res, 2016, 783:1-8. DOI:10. 1016/j. mrfmmm. 2015.11.001.
[40] Tang D, Kang R, Zeh HJ, et al. High-mobility group box 1, oxidative stress, and disease[J]. Antioxid Redox Signal, 2011, 14(7):1315-1335. DOI:10.1089/ars.2010.3356.
[41] Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death[J]. EMBO J, 2012, 31(5):1062-1079. DOI:10.1038/emboj.2011.497.
[42] Ohshima Y, Tsukimoto M, Takenouchi T, et al. Gamma-irradiation induces P2X7 receptor-dependent ATP release from B16 melanoma cells[J]. Biochim Biophys Acta, 2010, 1800(1):40-46.  doi: 10.1016/j.bbagen.2009.10.008
[43] Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance[J]. Nature, 2009, 461(7261):282-286. DOI:10.1038/nature08296.
[44] Martin OA, Yin X, Forrester HB, et al. Potential strategies to ameliorate risk of radiotherapy-induced second malignant neoplasms[J]. Semin Cancer Biol, 2016, 37-38:65-76. DOI:10.1016/j.semcancer.2015.12.003.
[45] Bernier J. Immuno-oncology:Allying forces of radio-and immuno-therapy to enhance cancer cell killing[J]. Crit Rev Oncol Hematol, 2016, 108:97-108. DOI:10.1016/j.critrevonc.2016.11.001.
[46] Ishihara D, Pop L, Takeshima T, et al. Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment[J]. Cancer Immunol Immunother, 2017, 66(3):281-298. DOI:10. 1007/s00262-016-1914-6.
[47] Golden EB, Chhabra A, Chachoua A, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours:a proof-of-principle trial[J]. Lancet Oncology, 2015, 16(7):795-803. DOI:10.1016/S1470-2045(15) 00054-6.