[1] Wen Q, Ma Q, Bai L, et al.Glycididazole Sodium combined with radioiodine therapy for patients with differentiated thyroid carcinoma (DTC)[J].Int J Clin Exp Med, 2015, 8(8):14095-14099.
[2]

陈滨. 甘氨双唑钠提高131I治疗分化型甲状腺癌颈淋巴结转移灶疗效的临床研究[D]. 吉林: 吉林大学, 2010.

Chen B.Clinical research of CMNa increased 131I treatment of differentiated thyroid cancer cervical lymph node metastases[D].Jilin:Jilin University, 2010.

[3] 李晓敏, 晋建华, 武志芳, 等.尼克酰胺对正常大鼠甲状腺辐射增敏作用的实验研究[J].医学研究杂志, 2012, 41(11):110-113.DOI:10.3969/j.issn.1673-548X.2012.11.033.
Li XM, Jin JH, Wu ZF, et al.An experimental study on radiation sensitizing effect of nicotinamide on normal thyroid in the rat[J].J Med Res, 2012, 41(11):110-113.  doi: 10.3969/j.issn.1673-548X.2012.11.033
[4]

苏慧东. siRNA-Bcl2增强人甲状腺癌FTC-133细胞131碘疗效的实验研究[D]. 郑州: 郑州大学, 2013.

Su HD.Study on siRNA-Bcl2 enhancing iodine-131 therapy effect in FTC-133 cell[D].Zhengzhou:Zhengzhou University, 2013.

[5]

王瑞华. siRNA干扰Bcl2表达联合131碘治疗低分化甲状腺癌的实验研究[D]. 郑州: 郑州大学, 2013.

Wang RH.Studying the treatment of siRNA-BCL2 combined with 131Iodine for poorly differentiated thyroid carcinoma[D].Zhengzhou:Zhengzhou University, 2013.

[6] 赖炜, 李俊杰.131I照射对分化型甲状腺癌细胞摄碘水平及NISmRNA表达的影响[J].现代诊断与治疗, 2012, 23(11):1837-1838.DOI:10.3969/j.issn.1001-8174.2012.11.010.
Lai W, Li JJ.Effect of 131I irradiation on radioiodine uptake in differentiated thyroid cancer cell and expression of NISmRNA.Mod Diagn Treat, 2012, 23(11):1837-1838.  doi: 10.3969/j.issn.1001-8174.2012.11.010
[7] Kapiteijn E, Schneider TC, Morreau H, et al.New treatment modalities in advanced thyroid cancer[J].Ann Oncol, 2012, 23(1):10-18.DOI:10.1093/annonc/mdr117.
[8] Tepmongkol S, Keelawat S, Honsawek S, et al.Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan:a correlation with the expression of peroxisome proliferator-activated receptor-gamma[J].Thyroid, 2008, 18(7):697-704.DOI:10.1089/thy.2008.0056.
[9] Fujii S, Srivastava V, Hegde A, et al.Regulation of AURKC expression by CpG island methylation in human cancer cells[J].Tumour Biol, 2015, 36(10):8147-8158.DOI:10.1007/s13277-015-3553-5.
[10] Wong KY, Chim CS.DNA methylation of tumor suppressor protein-coding and non-coding genes in multiple myeloma[J].Epigenomcis, 2015, 7(6):985-1001.DOI:10.2217/epi.15.57.
[11] Ngamphaiboon N, Dy GK, Ma WW, et al.A phase I study of the histone deacetylase (HDAC) inhibitor entinostat, in combination with sorafenib in patients with advanced solid tumors[J].Invest New Drugs, 2015, 33(1):225-232.DOI:10.1007/s10637-014-0174-6.
[12] Sharma K, Suresh PS, Mullangi R, et al.Quantitation of VEGFR2(vascular endothelial growth factor receptor) inhibitors-review of assay methodologies and perspectives[J].Biomed Chromatogr, 2015, 29(6):803-834.DOI:10.1002/bmc.3370.
[13]

Hanly EK, Rajoria S, Darzynkiewicz Z, et al.Disruption of mutated BRAF signaling modulates thyroid cancer phenotype[J/OL].BMC Res Notes, 2014, 7:187[2017-01-01].https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-7-187.DOI:10.1186/1756-0500-7-187.

[14] Xing J, Liu R, Xing M, et al.The BRAFT1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032(RG7204)[J].Biochem Biophys Res Commun, 2011, 404(4):958-962.DOI:10.1016/j.bbrc.2010.12.088.
[15] 周瑞瑜, 罗以.BRAFV600E和RAS基因突变与甲状腺癌远处转移及预后关系的研究进展[J].肿瘤药学, 2016, 6(3):178-181.DOI:10.3969/j.issn.2095-1264.2016.03.04.
Zhou RY, Luo Y.Research progress on the relationships of BRAFV600E and RAS gene mutation with distant metastasis and prognosis of thyroid carcinoma[J].Anti-tumor Pharmacy, 2016, 6(3):178-181.  doi: 10.3969/j.issn.2095-1264.2016.03.04
[16] Baratta MG, Porreca I, Di Lauro R.Oncogenic ras blocks the cAMP pathway and dedifferentiates thyroid cells via an impairment of pax8 transcriptional activity[J].Mol Endocrinol, 2009, 23(6):838-848.DOI:10.1210/me.2008-0353.
[17] Huang W, Dong Z, Chen Y, et al.Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo[J].Oncogene, 2016, 35(6):802.DOI:10.1038/onc.2015.419.
[18] Dong W, Cui J, Tian X, et al.Aberrant sonic hedgehog signaling pathway and STAT3 activation in papillary thyroid cancer[J].Int J Clin Exp Med, 2014, 7(7):1786-1793.
[19] Horn S, Figl A, Rachakonda PS, et al.TERT promoter mutations in familial and sporadic melanoma[J].Science, 2013, 339(6122):959-961.DOI:10.1126/science.1230062.
[20] Huang FW, Hodis E, Xu MJ, et al.Highly recurrent TERT promoter mutations in human melanoma[J].Science, 2013, 339(6122):957-959.DOI:10.1126/science.1229259.
[21] Alzahrani AS, Alsaadi R, Murugan AK.TERT promoter mutations in thyroid cancer[J].Horm Cancer, 2016, 7(3):165-177.DOI:10.1007/s12672-016-0256-3.
[22] Melo M, da Rocha AG, Vinagre J, et al.TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas[J].J Clin Endocrinol Metab, 2014, 99(5):E754-765.DOI:10.1210/jc.2013-3734.
[23] Brose MS, Nutting CM, Jarzab B, et al.Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer:a randomised, double-blind, phase 3 trial[J].Lancet, 2014, 384(9940):319-328.DOI:10.1016/S0140-6736(14)60421-9.
[24] Cabanillas ME, Schlumberger M, Jarzab B, et al.A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer:A clinical outcomes and biomarker assessment[J].Cancer, 2015, 121(16):2749-2756.DOI:10.1002/cncr.29395.
[25] Schlumberger M, Tahara M, Wirth LJ, et al.Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J].N Engl J Med, 2015, 372(7):621-630.DOI:10.1056/NEJMoa1406470.
[26] Marotta V, Di Somma C, Rubino M, et al.Second-line sunitinib as a feasible approach for iodine-refractory differentiated thyroid cancer after the failure of first-line sorafenib[J].Endocrine, 2015, 49(3):854-858.DOI:10.1007/s12020-014-0448-y.
[27] Worden F, Fassnacht M, Shi Y, et al.Safety and tolerability of sorafenib in patients with radioiodine-refractory thyroid cancer[J].Endocr Relat Cancer, 2015, 22(6):877-887.DOI:10.1530/ERC-15-0252.
[28] Nair A, Lemery SJ, Yang J, et al.FDA approval summary:lenvatinib for progressive, radio-iodine-refractory differentiated thyroid cancer[J].Clin Cancer Res, 2015, 21(23):5205-5208.DOI:10.1158/1078-0432.CCR-15-1377.
[29] Locati LD, Licitra L, Agate L, et al.Treatment of advanced thyroid cancer with axitinib:Phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments[J].Cancer, 2014, 120(17):2694-2703.DOI:10.1002/cncr.28766.
[30] Brose MS, Cabanillas ME, Cohen EE, et al.Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine:a nonrandomized, multicenter, open-label, phase 2 trial[J].Lancet Oncol, 2016, 17(9):1272-1282.DOI:http://dx.doi.org/10.1016/S1470-2045(16)30166-8.
[31] Rothenberg SM, Daniels GH, Wirth LJ.Redifferentiation of iodine-refractory BRAFV600E-mutant metastatic papillary thyroid cancer with dabrafenib-response[J].Clin Cancer Res, 2015, 21(24):5640-5641.DOI:10.1158/1078-0432.CCR-15-2298.
[32] Huillard O, Tenenbaum F, Clerc J, et al.Redifferentiation of iodine-refractory BRAFV600E-mutant metastatic papillary thyroid cancer with dabrafenib-letter[J].Clin Cancer Res, 2015, 21(24):5639.DOI:10.1158/1078-0432.CCR-15-1648.
[33] Chae IG, Kim DH, Kundu J, et al.Generation of ROS by CAY10598 leads to inactivation of STAT3 signaling and induction of apoptosis in human colon cancer HCT116 cells[J].Free Radic Res, 2014, 48(11):1311-1321.DOI:10.3109/10715762.2014.951838.