肝纤维化分子显像的研究进展

苏舒 唐刚华 向贤宏 聂大红

引用本文:
Citation:

肝纤维化分子显像的研究进展

    通讯作者: 唐刚华, gtang0224@126.com
  • 基金项目:

    广东省科技计划项目 2013B021800264

    国家自然科学基金 81671719

    广东省自然科学基金 2015A030313067

    广州市科技计划项目 201604020169

    国家自然科学基金 81371584

    国家自然科学基金 81571704

The research progress of molecular imaging of liver fibrosis

    Corresponding author: Ganghua Tang, gtang0224@126.com ;
  • Fund Project: Science and Technology Planning Project of Guangdong Province 2013B021800264National Natural Science Foundation of China 81671719Natural Science Foundation of Guangdong Province 2015A030313067Science and Technology Planning Project of Guangzhou City 201604020169National Natural Science Foundation of China 81371584National Natural Science Foundation of China 81571704

  • 摘要: 肝纤维化是一种伴随慢性肝病的病理过程,具有较高的发病率和病死率。目前诊断肝纤维化的金标准是肝活检术,但肝活检术有其局限性,且目前尚无有效的无创诊断肝纤维化的手段。在肝纤维化的早期阶段,其可通过治疗“逆转”,因此,肝纤维化的诊断和精确分期在控制该疾病中非常重要。由于分子影像学技术具有无创、特异度高等优点,因此其发展具有巨大潜力。笔者对磁共振分子影像学技术和核医学分子影像学技术在肝纤维化诊断和分期方面的最新进展进行概述。
  • [1] Mallat A, Lotersztajn S. Cellular mechanisms of tissue fibrosis.5.Novel insights into liver fibrosis[J]. Am J Physiol Cell Physiol, 2013, 305(8):C789-C799. DOI:10.1152/ajpcell.00230.2013.
    [2] Friedrich-Rust M, Ong MF, Martens S, et al. Performance of transient elastography for the staging of liver fibrosis:a meta-analysis[J]. Gastroenterology, 2008, 134(4):960-974. DOI:10.1053/j.gastro.2008.01.034.
    [3] Cohen EB, Afdhal NH. Ultrasound-based hepatic elastography:origins, limitations, and applications[J]. J Clin Gastroenterol, 2010, 44(9):637-645. DOI:10.1097/MCG.0b013e3181e12c39.
    [4] Bakan AA, Inci E, Bakan S, et al. Utility of diffusion-weighted imaging in the evaluation of liver fibrosis[J]. Eur Radiol, 2012, 22(3):682-687. DOI:10.1007/s00330-011-2295-z.
    [5] Sandrasegaran K, Akisik FM, Lin C, et al. Value of diffusion-weighted MRI for assessing liver fibrosis and cirrhosis[J]. AJR Am J Roentgenol, 2009, 193(6):1556-1560. DOI:10.2214/AJR.09.2436.
    [6] Wang YX, Yuan J, Chu ES, et al. T1rho MR imaging is sensitive to evaluate liver fibrosis:an experimental study in a rat biliary duct ligation model[J]. Radiology, 2011, 259(3):712-719. DOI:10.1148/radiol.11101638.
    [7] Allkemper T, Sagmeister F, Cicinnati V, et al. Evaluation of fibrotic liver disease with whole-liver T1ρ MR imaging:a feasibility study at 1.5T[J]. Radiology, 2014, 271(2):408-415. DOI:10.1148/radiol.13130342.
    [8] Zhao F, Wang YX, Yuan J. MR T1rho as an imaging biomarker for monitoring liver injury progression and regression:an experimental study in rats with carbon tetrachloride intoxication[J]. Eur Radiol, 2012, 22(8):1709-1716. DOI:10.1007/s00330-012-2419-0.
    [9] Wang Y, Ganger DR, Levitsky J, et al. Assessment of chronic hepatitis and fibrosis:comparison of MR elastography and diffusionweighted imaging[J]. AJR Am J Roentgenol, 2011, 196(3):553-561.DOI:10.2214/AJR.10.4580.
    [10] Wang QB, Zhu H, Liu HL, et al. Performance of magnetic resonance elastography and diffusion-weighted imaging for the staging of hepatic fibrosis:A meta-analysis[J].Hepatology, 2012, 56(1):239-247.DOI:10.1002/hep.25610.
    [11] Thng CH, Koh TS, Collins DJ, et al. Perfusion magnetic resonance imaging of the liver[J]. World J Gastroenterology, 2010, 16(13):1598-1609. DOI:10.3748/wjg.v16.i13.1598.
    [12] Mankoff DA. A definition of molecular imaging[J]. J Nucl Med, 2007, 48(6):18N, 21N.
    [13] Hayashi H, Sakai T.Animal models for the study of liver fibrosis:new insights from knockout mouse models[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(5):G729-G738. DOI:10.1152/ajpgi.00013.2011.
    [14] Polasek M, Fuchs BC, Uppal R, et al. Molecular MR imaging of liver fibrosis:a feasibility study using rat and mouse models[J]. J Hepatol, 2012, 57(3):549-555. DOI:10.1016/j.jhep.2012.04.035.
    [15] Dodig M, Ogunwale B, Dasarathy S, et al. Differences in regulation of type I collagen synthesis in primary and passaged hepatic stellate cell cultures:the role of alpha5beta1-integrin[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(1):G154-G164. DOI:10.1152/ajpgi.00432.2006.
    [16] Ehling J, Bartneck M, Fech V, et al. Elastin-based molecular MRI of liver fibrosis[J]. Hepatology, 2013, 58(4):1517-1518. DOI:10.1002/hep.26326.
    [17] Vithanarachchi SM, Allen MJ. Strategies for Target-Specific contrast agents for magnetic resonance imaging[J]. Curr Mol Imaging, 2012, 1(1):12-25. DOI:10.2174/2211555211201010012.
    [18] Ge PL, Du SD, Mao YL. Advances in preoperative assessment of liver function[J]. Hepatobiliary Pancreat Dis Int, 2014, 13(4):361-370. DOI:10.1016/S1499-3872(14)60267-8.
    [19] Eo JS, Paeng JC, Lee DS. Nuclear imaging for functional evaluation and theragnosis in liver malignancy and transplantation[J]. World J Gastroenterol, 2014, 20(18):5375-5388. DOI: 10.3748/wjg.v20.i18.5375.
    [20] Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion:RGD and integrins[J]. Science, 1987, 238(4826):491-497. DOI:10.1126/science.2821619.
    [21] Zhou X, Murphy FR, Gehdu N. Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells[J]. J Biol Chem, 2004, 279(23):23996-24006. DOI:10.1074/jbc.M311668200.
    [22] Li F, Song Z, Li Q. Molecular imaging of hepatic stellate cell activity by visualization of hepatic integrin alphavbeta3 expression with SPECT in rat[J]. Hepatology, 2011, 54(3):1020-1030. DOI:10.1002/hep.24467.
    [23] Zhang X, Xin J, Shi Y, et al. Assessing activation of hepatic stellate cells by (99m)Tc-3PRGD2 scintigraphy targeting integrin αvβ3:a feasibility study[J]. Nucl Med Biol, 2015, 42(3):250-255. DOI: